pub struct RapierContextSimulation {
pub islands: IslandManager,
pub broad_phase: DefaultBroadPhase,
pub narrow_phase: NarrowPhase,
pub ccd_solver: CCDSolver,
pub pipeline: PhysicsPipeline,
pub integration_parameters: IntegrationParameters,
/* private fields */
}
Expand description
The Rapier context, containing parts of the state of the physics engine, specific to the simulation step.
This is the main driver for a rapier context, which will create other required components if needed.
Additionally to its required components, this component is also always paired with a RapierConfiguration
component.
Fields§
§islands: IslandManager
The island manager, which detects what object is sleeping (not moving much) to reduce computations.
broad_phase: DefaultBroadPhase
The broad-phase, which detects potential contact pairs.
narrow_phase: NarrowPhase
The narrow-phase, which computes contact points, tests intersections, and maintain the contact and intersection graphs.
ccd_solver: CCDSolver
The solver, which handles Continuous Collision Detection (CCD).
pipeline: PhysicsPipeline
The physics pipeline, which advance the simulation step by step.
integration_parameters: IntegrationParameters
The integration parameters, controlling various low-level coefficient of the simulation.
Implementations§
Source§impl RapierContextSimulation
impl RapierContextSimulation
Sourcepub fn step_simulation(
&mut self,
colliders: &mut RapierContextColliders,
joints: &mut RapierContextJoints,
rigidbody_set: &mut RapierRigidBodySet,
gravity: Vect,
timestep_mode: TimestepMode,
events: Option<(&EventWriter<'_, CollisionEvent>, &EventWriter<'_, ContactForceEvent>)>,
hooks: &dyn PhysicsHooks,
time: &Time,
sim_to_render_time: &mut SimulationToRenderTime,
interpolation_query: Option<&mut Query<'_, '_, (&RapierRigidBodyHandle, &mut TransformInterpolation)>>,
)
pub fn step_simulation( &mut self, colliders: &mut RapierContextColliders, joints: &mut RapierContextJoints, rigidbody_set: &mut RapierRigidBodySet, gravity: Vect, timestep_mode: TimestepMode, events: Option<(&EventWriter<'_, CollisionEvent>, &EventWriter<'_, ContactForceEvent>)>, hooks: &dyn PhysicsHooks, time: &Time, sim_to_render_time: &mut SimulationToRenderTime, interpolation_query: Option<&mut Query<'_, '_, (&RapierRigidBodyHandle, &mut TransformInterpolation)>>, )
Advance the simulation, based on the given timestep mode.
Sourcepub fn send_bevy_events(
&mut self,
collision_event_writer: &mut EventWriter<'_, CollisionEvent>,
contact_force_event_writer: &mut EventWriter<'_, ContactForceEvent>,
)
pub fn send_bevy_events( &mut self, collision_event_writer: &mut EventWriter<'_, CollisionEvent>, contact_force_event_writer: &mut EventWriter<'_, ContactForceEvent>, )
Generates bevy events for any physics interactions that have happened that are stored in the events list
Sourcepub fn move_shape(
&mut self,
rapier_colliders: &RapierContextColliders,
rapier_query_pipeline: &RapierQueryPipeline,
rigidbody_set: &mut RapierRigidBodySet,
movement: Vect,
shape: &Collider,
shape_translation: Vect,
shape_rotation: Rot,
shape_mass: f32,
options: &MoveShapeOptions,
filter: QueryFilter<'_>,
events: impl FnMut(CharacterCollision),
) -> MoveShapeOutput
pub fn move_shape( &mut self, rapier_colliders: &RapierContextColliders, rapier_query_pipeline: &RapierQueryPipeline, rigidbody_set: &mut RapierRigidBodySet, movement: Vect, shape: &Collider, shape_translation: Vect, shape_rotation: Rot, shape_mass: f32, options: &MoveShapeOptions, filter: QueryFilter<'_>, events: impl FnMut(CharacterCollision), ) -> MoveShapeOutput
Attempts to move shape, optionally sliding or climbing obstacles.
§Parameters
movement
: the translational movement to apply.shape
: the shape to move.shape_translation
: the initial position of the shape.shape_rotation
: the rotation of the shape.shape_mass
: the mass of the shape to be considered by the impulse calculation ifMoveShapeOptions::apply_impulse_to_dynamic_bodies
is set to true.options
: configures the behavior of the automatic sliding and climbing.filter
: indicates what collider or rigid-body needs to be ignored by the obstacle detection.events
: callback run on each obstacle hit by the shape on its path.
Source§impl RapierContextSimulation
impl RapierContextSimulation
Sourcepub fn contact_pairs_with<'a, 'b: 'a>(
&'a self,
context_colliders: &'b RapierContextColliders,
rigidbody_set: &'b RapierRigidBodySet,
collider: Entity,
) -> impl Iterator<Item = ContactPairView<'a>>
pub fn contact_pairs_with<'a, 'b: 'a>( &'a self, context_colliders: &'b RapierContextColliders, rigidbody_set: &'b RapierRigidBodySet, collider: Entity, ) -> impl Iterator<Item = ContactPairView<'a>>
All the contact pairs involving the non-sensor collider attached to the given entity.
The returned contact pairs identify pairs of colliders with intersecting bounding-volumes.
To check if any geometric contact happened between the collider shapes, check
ContactPairView::has_any_active_contact
.
Sourcepub fn intersection_pairs_with<'a, 'b: 'a>(
&'a self,
rapier_colliders: &'b RapierContextColliders,
collider: Entity,
) -> impl Iterator<Item = (Entity, Entity, bool)> + 'a
pub fn intersection_pairs_with<'a, 'b: 'a>( &'a self, rapier_colliders: &'b RapierContextColliders, collider: Entity, ) -> impl Iterator<Item = (Entity, Entity, bool)> + 'a
All the intersection pairs involving the collider attached to the given entity, where at least one collider involved in the intersection is a sensor.
The returned contact pairs identify pairs of colliders (where at least one is a sensor) with intersecting bounding-volumes. To check if any geometric overlap happened between the collider shapes, check the returned boolean.
Sourcepub fn contact_pair<'a, 'b: 'a>(
&'a self,
context_colliders: &'b RapierContextColliders,
rigidbody_set: &'b RapierRigidBodySet,
collider1: Entity,
collider2: Entity,
) -> Option<ContactPairView<'a>>
pub fn contact_pair<'a, 'b: 'a>( &'a self, context_colliders: &'b RapierContextColliders, rigidbody_set: &'b RapierRigidBodySet, collider1: Entity, collider2: Entity, ) -> Option<ContactPairView<'a>>
The contact pair involving two specific colliders.
If this returns None
, there is no contact between the two colliders.
If this returns Some
, then there may be a contact between the two colliders. Check the
result ContactPairView::has_any_active_contact
method to see if there is an actual contact.
Sourcepub fn intersection_pair(
&self,
rapier_colliders: &RapierContextColliders,
collider1: Entity,
collider2: Entity,
) -> Option<bool>
pub fn intersection_pair( &self, rapier_colliders: &RapierContextColliders, collider1: Entity, collider2: Entity, ) -> Option<bool>
The intersection pair involving two specific colliders (at least one being a sensor).
If this returns None
or Some(false)
, then there is no intersection between the two colliders.
If this returns Some(true)
, then there may be an intersection between the two colliders.
Sourcepub fn contact_pairs<'a, 'b: 'a>(
&'a self,
context_colliders: &'b RapierContextColliders,
rigidbody_set: &'b RapierRigidBodySet,
) -> impl Iterator<Item = ContactPairView<'a>>
pub fn contact_pairs<'a, 'b: 'a>( &'a self, context_colliders: &'b RapierContextColliders, rigidbody_set: &'b RapierRigidBodySet, ) -> impl Iterator<Item = ContactPairView<'a>>
All the contact pairs detected during the last timestep.
Sourcepub fn intersection_pairs<'a, 'b: 'a>(
&'a self,
rapier_colliders: &'b RapierContextColliders,
) -> impl Iterator<Item = (Entity, Entity, bool)> + 'a
pub fn intersection_pairs<'a, 'b: 'a>( &'a self, rapier_colliders: &'b RapierContextColliders, ) -> impl Iterator<Item = (Entity, Entity, bool)> + 'a
All the intersection pairs detected during the last timestep.
Trait Implementations§
Source§impl Component for RapierContextSimulation
Required Components: RapierContextColliders
, RapierRigidBodySet
, RapierContextJoints
, RapierQueryPipeline
, SimulationToRenderTime
.
impl Component for RapierContextSimulation
Required Components: RapierContextColliders
, RapierRigidBodySet
, RapierContextJoints
, RapierQueryPipeline
, SimulationToRenderTime
.
A component’s Required Components are inserted whenever it is inserted. Note that this will also insert the required components of the required components, recursively, in depth-first order.
Source§const STORAGE_TYPE: StorageType = bevy::ecs::component::StorageType::Table
const STORAGE_TYPE: StorageType = bevy::ecs::component::StorageType::Table
Source§fn register_required_components(
requiree: ComponentId,
components: &mut Components,
storages: &mut Storages,
required_components: &mut RequiredComponents,
inheritance_depth: u16,
)
fn register_required_components( requiree: ComponentId, components: &mut Components, storages: &mut Storages, required_components: &mut RequiredComponents, inheritance_depth: u16, )
Source§fn register_component_hooks(hooks: &mut ComponentHooks)
fn register_component_hooks(hooks: &mut ComponentHooks)
ComponentHooks
.Auto Trait Implementations§
impl Freeze for RapierContextSimulation
impl !RefUnwindSafe for RapierContextSimulation
impl Send for RapierContextSimulation
impl Sync for RapierContextSimulation
impl Unpin for RapierContextSimulation
impl !UnwindSafe for RapierContextSimulation
Blanket Implementations§
Source§impl<T, U> AsBindGroupShaderType<U> for T
impl<T, U> AsBindGroupShaderType<U> for T
Source§fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
T
ShaderType
for self
. When used in AsBindGroup
derives, it is safe to assume that all images in self
exist.Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<C> Bundle for Cwhere
C: Component,
impl<C> Bundle for Cwhere
C: Component,
fn component_ids( components: &mut Components, storages: &mut Storages, ids: &mut impl FnMut(ComponentId), )
unsafe fn from_components<T, F>(ctx: &mut T, func: &mut F) -> C
Source§fn register_required_components(
components: &mut Components,
storages: &mut Storages,
required_components: &mut RequiredComponents,
)
fn register_required_components( components: &mut Components, storages: &mut Storages, required_components: &mut RequiredComponents, )
Bundle
.Source§fn get_component_ids(
components: &Components,
ids: &mut impl FnMut(Option<ComponentId>),
)
fn get_component_ids( components: &Components, ids: &mut impl FnMut(Option<ComponentId>), )
Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.Source§impl<T> DowncastSync for T
impl<T> DowncastSync for T
Source§impl<C> DynamicBundle for Cwhere
C: Component,
impl<C> DynamicBundle for Cwhere
C: Component,
fn get_components(self, func: &mut impl FnMut(StorageType, OwningPtr<'_>))
Source§impl<T> FromWorld for Twhere
T: Default,
impl<T> FromWorld for Twhere
T: Default,
Source§fn from_world(_world: &mut World) -> T
fn from_world(_world: &mut World) -> T
Creates Self
using default()
.
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.