Struct avian3d::spatial_query::SpatialQuery
source · pub struct SpatialQuery<'w, 's> {
pub query_pipeline: ResMut<'w, SpatialQueryPipeline>,
/* private fields */
}
Expand description
A system parameter for performing spatial queries.
§Methods
- Raycasting:
cast_ray
,ray_hits
,ray_hits_callback
- Shapecasting:
cast_shape
,shape_hits
,shape_hits_callback
- Point projection:
project_point
- Intersection tests
- Point intersections:
point_intersections
,point_intersections_callback
- AABB intersections:
aabb_intersections_with_aabb
,aabb_intersections_with_aabb_callback
- Shape intersections:
shape_intersections
shape_intersections_callback
- Point intersections:
For simple raycasts and shapecasts, consider using the RayCaster
and ShapeCaster
components that
provide a more ECS-based approach and perform casts on every frame.
§Raycasting example
use avian3d::prelude::*;
use bevy::prelude::*;
fn print_hits(spatial_query: SpatialQuery) {
// Cast ray and print first hit
if let Some(first_hit) = spatial_query.cast_ray(
Vec3::ZERO, // Origin
Dir3::X, // Direction
100.0, // Maximum time of impact (travel distance)
true, // Does the ray treat colliders as "solid"
SpatialQueryFilter::default(), // Query filter
) {
println!("First hit: {:?}", first_hit);
}
// Cast ray and get up to 20 hits
let hits = spatial_query.ray_hits(
Vec3::ZERO, // Origin
Dir3::X, // Direction
100.0, // Maximum time of impact (travel distance)
20, // Maximum number of hits
true, // Does the ray treat colliders as "solid"
SpatialQueryFilter::default(), // Query filter
);
// Print hits
for hit in hits.iter() {
println!("Hit: {:?}", hit);
}
}
Fields§
§query_pipeline: ResMut<'w, SpatialQueryPipeline>
The SpatialQueryPipeline
.
Implementations§
source§impl<'w, 's> SpatialQuery<'w, 's>
impl<'w, 's> SpatialQuery<'w, 's>
sourcepub fn update_pipeline(&mut self)
pub fn update_pipeline(&mut self)
Updates the colliders in the pipeline. This is done automatically once per physics frame in
PhysicsStepSet::SpatialQuery
, but if you modify colliders or their positions before that, you can
call this to make sure the data is up to date when performing spatial queries using SpatialQuery
.
sourcepub fn cast_ray(
&self,
origin: Vector,
direction: Dir3,
max_time_of_impact: Scalar,
solid: bool,
query_filter: SpatialQueryFilter
) -> Option<RayHitData>
pub fn cast_ray( &self, origin: Vector, direction: Dir3, max_time_of_impact: Scalar, solid: bool, query_filter: SpatialQueryFilter ) -> Option<RayHitData>
Casts a ray and computes the closest hit with a collider.
If there are no hits, None
is returned.
§Arguments
origin
: Where the ray is cast from.direction
: What direction the ray is cast in.max_time_of_impact
: The maximum distance that the ray can travel.solid
: If true and the ray origin is inside of a collider, the hit point will be the ray origin itself. Otherwise, the collider will be treated as hollow, and the hit point will be at the collider’s boundary.query_filter
: ASpatialQueryFilter
that determines which colliders are taken into account in the query.
§Example
use avian3d::prelude::*;
use bevy::prelude::*;
fn print_hits(spatial_query: SpatialQuery) {
// Cast ray and print first hit
if let Some(first_hit) = spatial_query.cast_ray(
Vec3::ZERO, // Origin
Dir3::X, // Direction
100.0, // Maximum time of impact (travel distance)
true, // Does the ray treat colliders as "solid"
SpatialQueryFilter::default(), // Query filter
) {
println!("First hit: {:?}", first_hit);
}
}
sourcepub fn cast_ray_predicate(
&self,
origin: Vector,
direction: Dir3,
max_time_of_impact: Scalar,
solid: bool,
query_filter: SpatialQueryFilter,
predicate: &dyn Fn(Entity) -> bool
) -> Option<RayHitData>
pub fn cast_ray_predicate( &self, origin: Vector, direction: Dir3, max_time_of_impact: Scalar, solid: bool, query_filter: SpatialQueryFilter, predicate: &dyn Fn(Entity) -> bool ) -> Option<RayHitData>
Casts a ray and computes the closest hit with a collider.
If there are no hits, None
is returned.
§Arguments
origin
: Where the ray is cast from.direction
: What direction the ray is cast in.max_time_of_impact
: The maximum distance that the ray can travel.solid
: If true and the ray origin is inside of a collider, the hit point will be the ray origin itself. Otherwise, the collider will be treated as hollow, and the hit point will be at the collider’s boundary.query_filter
: ASpatialQueryFilter
that determines which colliders are taken into account in the query.predicate
: A function with which the colliders are filtered. Given the Entity it should return false, if the entity should be ignored.
§Example
use avian3d::prelude::*;
use bevy::prelude::*;
#[derive(Component)]
struct Invisible;
fn print_hits(spatial_query: SpatialQuery, query: Query<&Invisible>) {
// Cast ray and print first hit
if let Some(first_hit) = spatial_query.cast_ray_predicate(
Vec3::ZERO, // Origin
Dir3::X, // Direction
100.0, // Maximum time of impact (travel distance)
true, // Does the ray treat colliders as "solid"
SpatialQueryFilter::default(), // Query filter
&|entity| { // Predicate
// Skip entities with the `Invisible` component.
!query.contains(entity)
}
) {
println!("First hit: {:?}", first_hit);
}
}
sourcepub fn ray_hits(
&self,
origin: Vector,
direction: Dir3,
max_time_of_impact: Scalar,
max_hits: u32,
solid: bool,
query_filter: SpatialQueryFilter
) -> Vec<RayHitData>
pub fn ray_hits( &self, origin: Vector, direction: Dir3, max_time_of_impact: Scalar, max_hits: u32, solid: bool, query_filter: SpatialQueryFilter ) -> Vec<RayHitData>
Casts a ray and computes all hits until max_hits
is reached.
Note that the order of the results is not guaranteed, and if there are more hits than max_hits
,
some hits will be missed.
§Arguments
origin
: Where the ray is cast from.direction
: What direction the ray is cast in.max_time_of_impact
: The maximum distance that the ray can travel.max_hits
: The maximum number of hits. Additional hits will be missed.solid
: If true and the ray origin is inside of a collider, the hit point will be the ray origin itself. Otherwise, the collider will be treated as hollow, and the hit point will be at the collider’s boundary.query_filter
: ASpatialQueryFilter
that determines which colliders are taken into account in the query.
§Example
use avian3d::prelude::*;
use bevy::prelude::*;
fn print_hits(spatial_query: SpatialQuery) {
// Cast ray and get hits
let hits = spatial_query.ray_hits(
Vec3::ZERO, // Origin
Dir3::X, // Direction
100.0, // Maximum time of impact (travel distance)
20, // Maximum number of hits
true, // Does the ray treat colliders as "solid"
SpatialQueryFilter::default(), // Query filter
);
// Print hits
for hit in hits.iter() {
println!("Hit: {:?}", hit);
}
}
sourcepub fn ray_hits_callback(
&self,
origin: Vector,
direction: Dir3,
max_time_of_impact: Scalar,
solid: bool,
query_filter: SpatialQueryFilter,
callback: impl FnMut(RayHitData) -> bool
)
pub fn ray_hits_callback( &self, origin: Vector, direction: Dir3, max_time_of_impact: Scalar, solid: bool, query_filter: SpatialQueryFilter, callback: impl FnMut(RayHitData) -> bool )
Casts a ray and computes all hits, calling the given callback
for each hit. The raycast stops when callback
returns false or all hits have been found.
Note that the order of the results is not guaranteed.
§Arguments
origin
: Where the ray is cast from.direction
: What direction the ray is cast in.max_time_of_impact
: The maximum distance that the ray can travel.solid
: If true and the ray origin is inside of a collider, the hit point will be the ray origin itself. Otherwise, the collider will be treated as hollow, and the hit point will be at the collider’s boundary.query_filter
: ASpatialQueryFilter
that determines which colliders are taken into account in the query.callback
: A callback function called for each hit.
§Example
use avian3d::prelude::*;
use bevy::prelude::*;
fn print_hits(spatial_query: SpatialQuery) {
let mut hits = vec![];
// Cast ray and get all hits
spatial_query.ray_hits_callback(
Vec3::ZERO, // Origin
Dir3::X, // Direction
100.0, // Maximum time of impact (travel distance)
true, // Does the ray treat colliders as "solid"
SpatialQueryFilter::default(), // Query filter
|hit| { // Callback function
hits.push(hit);
true
},
);
// Print hits
for hit in hits.iter() {
println!("Hit: {:?}", hit);
}
}
sourcepub fn cast_shape(
&self,
shape: &Collider,
origin: Vector,
shape_rotation: Quaternion,
direction: Dir3,
max_time_of_impact: Scalar,
ignore_origin_penetration: bool,
query_filter: SpatialQueryFilter
) -> Option<ShapeHitData>
pub fn cast_shape( &self, shape: &Collider, origin: Vector, shape_rotation: Quaternion, direction: Dir3, max_time_of_impact: Scalar, ignore_origin_penetration: bool, query_filter: SpatialQueryFilter ) -> Option<ShapeHitData>
Casts a shape with a given rotation and computes the closest hit
with a collider. If there are no hits, None
is returned.
For a more ECS-based approach, consider using the ShapeCaster
component instead.
§Arguments
shape
: The shape being cast represented as aCollider
.origin
: Where the shape is cast from.shape_rotation
: The rotation of the shape being cast.direction
: What direction the shape is cast in.max_time_of_impact
: The maximum distance that the shape can travel.ignore_origin_penetration
: If true and the shape is already penetrating a collider at the shape origin, the hit will be ignored and only the next hit will be computed. Otherwise, the initial hit will be returned.query_filter
: ASpatialQueryFilter
that determines which colliders are taken into account in the query.
§Example
use avian3d::prelude::*;
use bevy::prelude::*;
fn print_hits(spatial_query: SpatialQuery) {
// Cast ray and print first hit
if let Some(first_hit) = spatial_query.cast_shape(
&Collider::sphere(0.5), // Shape
Vec3::ZERO, // Origin
Quat::default(), // Shape rotation
Dir3::X, // Direction
100.0, // Maximum time of impact (travel distance)
true, // Should initial penetration at the origin be ignored
SpatialQueryFilter::default(), // Query filter
) {
println!("First hit: {:?}", first_hit);
}
}
sourcepub fn shape_hits(
&self,
shape: &Collider,
origin: Vector,
shape_rotation: Quaternion,
direction: Dir3,
max_time_of_impact: Scalar,
max_hits: u32,
ignore_origin_penetration: bool,
query_filter: SpatialQueryFilter
) -> Vec<ShapeHitData>
pub fn shape_hits( &self, shape: &Collider, origin: Vector, shape_rotation: Quaternion, direction: Dir3, max_time_of_impact: Scalar, max_hits: u32, ignore_origin_penetration: bool, query_filter: SpatialQueryFilter ) -> Vec<ShapeHitData>
Casts a shape with a given rotation and computes computes all hits
in the order of the time of impact until max_hits
is reached.
§Arguments
shape
: The shape being cast represented as aCollider
.origin
: Where the shape is cast from.shape_rotation
: The rotation of the shape being cast.direction
: What direction the shape is cast in.max_time_of_impact
: The maximum distance that the shape can travel.max_hits
: The maximum number of hits. Additional hits will be missed.ignore_origin_penetration
: If true and the shape is already penetrating a collider at the shape origin, the hit will be ignored and only the next hit will be computed. Otherwise, the initial hit will be returned.query_filter
: ASpatialQueryFilter
that determines which colliders are taken into account in the query.callback
: A callback function called for each hit.
§Example
use avian3d::prelude::*;
use bevy::prelude::*;
fn print_hits(spatial_query: SpatialQuery) {
// Cast shape and get all hits
let hits = spatial_query.shape_hits(
&Collider::sphere(0.5), // Shape
Vec3::ZERO, // Origin
Quat::default(), // Shape rotation
Dir3::X, // Direction
100.0, // Maximum time of impact (travel distance)
20, // Max hits
true, // Should initial penetration at the origin be ignored
SpatialQueryFilter::default(), // Query filter
);
// Print hits
for hit in hits.iter() {
println!("Hit: {:?}", hit);
}
}
sourcepub fn shape_hits_callback(
&self,
shape: &Collider,
origin: Vector,
shape_rotation: Quaternion,
direction: Dir3,
max_time_of_impact: Scalar,
ignore_origin_penetration: bool,
query_filter: SpatialQueryFilter,
callback: impl FnMut(ShapeHitData) -> bool
)
pub fn shape_hits_callback( &self, shape: &Collider, origin: Vector, shape_rotation: Quaternion, direction: Dir3, max_time_of_impact: Scalar, ignore_origin_penetration: bool, query_filter: SpatialQueryFilter, callback: impl FnMut(ShapeHitData) -> bool )
Casts a shape with a given rotation and computes computes all hits
in the order of the time of impact, calling the given callback
for each hit. The shapecast stops when
callback
returns false or all hits have been found.
§Arguments
shape
: The shape being cast represented as aCollider
.origin
: Where the shape is cast from.shape_rotation
: The rotation of the shape being cast.direction
: What direction the shape is cast in.max_time_of_impact
: The maximum distance that the shape can travel.ignore_origin_penetration
: If true and the shape is already penetrating a collider at the shape origin, the hit will be ignored and only the next hit will be computed. Otherwise, the initial hit will be returned.query_filter
: ASpatialQueryFilter
that determines which colliders are taken into account in the query.callback
: A callback function called for each hit.
§Example
use avian3d::prelude::*;
use bevy::prelude::*;
fn print_hits(spatial_query: SpatialQuery) {
let mut hits = vec![];
// Cast shape and get all hits
spatial_query.shape_hits_callback(
&Collider::sphere(0.5), // Shape
Vec3::ZERO, // Origin
Quat::default(), // Shape rotation
Dir3::X, // Direction
100.0, // Maximum time of impact (travel distance)
true, // Should initial penetration at the origin be ignored
SpatialQueryFilter::default(), // Query filter
|hit| { // Callback function
hits.push(hit);
true
},
);
// Print hits
for hit in hits.iter() {
println!("Hit: {:?}", hit);
}
}
sourcepub fn project_point(
&self,
point: Vector,
solid: bool,
query_filter: SpatialQueryFilter
) -> Option<PointProjection>
pub fn project_point( &self, point: Vector, solid: bool, query_filter: SpatialQueryFilter ) -> Option<PointProjection>
Finds the projection of a given point on the closest collider.
If one isn’t found, None
is returned.
§Arguments
point
: The point that should be projected.solid
: If true and the point is inside of a collider, the projection will be at the point. Otherwise, the collider will be treated as hollow, and the projection will be at the collider’s boundary.query_filter
: ASpatialQueryFilter
that determines which colliders are taken into account in the query.
§Example
use avian3d::prelude::*;
use bevy::prelude::*;
fn print_point_projection(spatial_query: SpatialQuery) {
// Project a point and print the result
if let Some(projection) = spatial_query.project_point(
Vec3::ZERO, // Point
true, // Are colliders treated as "solid"
SpatialQueryFilter::default(), // Query filter
) {
println!("Projection: {:?}", projection);
}
}
sourcepub fn point_intersections(
&self,
point: Vector,
query_filter: SpatialQueryFilter
) -> Vec<Entity>
pub fn point_intersections( &self, point: Vector, query_filter: SpatialQueryFilter ) -> Vec<Entity>
An intersection test that finds all entities with a collider that contains the given point.
§Arguments
point
: The point that intersections are tested against.query_filter
: ASpatialQueryFilter
that determines which colliders are taken into account in the query.
§Example
use avian3d::prelude::*;
use bevy::prelude::*;
fn print_point_intersections(spatial_query: SpatialQuery) {
let intersections =
spatial_query.point_intersections(Vec3::ZERO, SpatialQueryFilter::default());
for entity in intersections.iter() {
println!("Entity: {:?}", entity);
}
}
sourcepub fn point_intersections_callback(
&self,
point: Vector,
query_filter: SpatialQueryFilter,
callback: impl FnMut(Entity) -> bool
)
pub fn point_intersections_callback( &self, point: Vector, query_filter: SpatialQueryFilter, callback: impl FnMut(Entity) -> bool )
An intersection test that finds all entities with a collider
that contains the given point, calling the given callback
for each intersection.
The search stops when callback
returns false
or all intersections have been found.
§Arguments
point
: The point that intersections are tested against.query_filter
: ASpatialQueryFilter
that determines which colliders are taken into account in the query.callback
: A callback function called for each intersection.
§Example
use avian3d::prelude::*;
use bevy::prelude::*;
fn print_point_intersections(spatial_query: SpatialQuery) {
let mut intersections = vec![];
spatial_query.point_intersections_callback(
Vec3::ZERO, // Point
SpatialQueryFilter::default(), // Query filter
|entity| { // Callback function
intersections.push(entity);
true
},
);
for entity in intersections.iter() {
println!("Entity: {:?}", entity);
}
}
sourcepub fn aabb_intersections_with_aabb(&self, aabb: ColliderAabb) -> Vec<Entity>
pub fn aabb_intersections_with_aabb(&self, aabb: ColliderAabb) -> Vec<Entity>
An intersection test that finds all entities with a ColliderAabb
that is intersecting the given aabb
.
§Example
use avian3d::prelude::*;
use bevy::prelude::*;
fn print_aabb_intersections(spatial_query: SpatialQuery) {
let aabb = Collider::sphere(0.5).aabb(Vec3::ZERO, Quat::default());
let intersections = spatial_query.aabb_intersections_with_aabb(aabb);
for entity in intersections.iter() {
println!("Entity: {:?}", entity);
}
}
sourcepub fn aabb_intersections_with_aabb_callback(
&self,
aabb: ColliderAabb,
callback: impl FnMut(Entity) -> bool
)
pub fn aabb_intersections_with_aabb_callback( &self, aabb: ColliderAabb, callback: impl FnMut(Entity) -> bool )
An intersection test that finds all entities with a ColliderAabb
that is intersecting the given aabb
, calling callback
for each intersection.
The search stops when callback
returns false
or all intersections have been found.
§Example
use avian3d::prelude::*;
use bevy::prelude::*;
fn print_aabb_intersections(spatial_query: SpatialQuery) {
let mut intersections = vec![];
spatial_query.aabb_intersections_with_aabb_callback(
Collider::sphere(0.5).aabb(Vec3::ZERO, Quat::default()),
|entity| {
intersections.push(entity);
true
}
);
for entity in intersections.iter() {
println!("Entity: {:?}", entity);
}
}
sourcepub fn shape_intersections(
&self,
shape: &Collider,
shape_position: Vector,
shape_rotation: Quaternion,
query_filter: SpatialQueryFilter
) -> Vec<Entity>
pub fn shape_intersections( &self, shape: &Collider, shape_position: Vector, shape_rotation: Quaternion, query_filter: SpatialQueryFilter ) -> Vec<Entity>
An intersection test that finds all entities with a Collider
that is intersecting the given shape
with a given position and rotation.
§Arguments
shape
: The shape that intersections are tested against represented as aCollider
.shape_position
: The position of the shape.shape_rotation
: The rotation of the shape.query_filter
: ASpatialQueryFilter
that determines which colliders are taken into account in the query.
§Example
use avian3d::prelude::*;
use bevy::prelude::*;
fn print_shape_intersections(spatial_query: SpatialQuery) {
let intersections = spatial_query.shape_intersections(
&Collider::sphere(0.5), // Shape
Vec3::ZERO, // Shape position
Quat::default(), // Shape rotation
SpatialQueryFilter::default(), // Query filter
);
for entity in intersections.iter() {
println!("Entity: {:?}", entity);
}
}
sourcepub fn shape_intersections_callback(
&self,
shape: &Collider,
shape_position: Vector,
shape_rotation: Quaternion,
query_filter: SpatialQueryFilter,
callback: impl FnMut(Entity) -> bool
)
pub fn shape_intersections_callback( &self, shape: &Collider, shape_position: Vector, shape_rotation: Quaternion, query_filter: SpatialQueryFilter, callback: impl FnMut(Entity) -> bool )
An intersection test that finds all entities with a Collider
that is intersecting the given shape
with a given position and rotation, calling callback
for each
intersection. The search stops when callback
returns false
or all intersections have been found.
§Arguments
shape
: The shape that intersections are tested against represented as aCollider
.shape_position
: The position of the shape.shape_rotation
: The rotation of the shape.query_filter
: ASpatialQueryFilter
that determines which colliders are taken into account in the query.callback
: A callback function called for each intersection.
§Example
use avian3d::prelude::*;
use bevy::prelude::*;
fn print_shape_intersections(spatial_query: SpatialQuery) {
let mut intersections = vec![];
spatial_query.shape_intersections_callback(
&Collider::sphere(0.5), // Shape
Vec3::ZERO, // Shape position
Quat::default(), // Shape rotation
SpatialQueryFilter::default(), // Query filter
|entity| { // Callback function
intersections.push(entity);
true
},
);
for entity in intersections.iter() {
println!("Entity: {:?}", entity);
}
}
Trait Implementations§
source§impl SystemParam for SpatialQuery<'_, '_>
impl SystemParam for SpatialQuery<'_, '_>
§type Item<'w, 's> = SpatialQuery<'w, 's>
type Item<'w, 's> = SpatialQuery<'w, 's>
Self
, instantiated with new lifetimes. Read moresource§fn init_state(world: &mut World, system_meta: &mut SystemMeta) -> Self::State
fn init_state(world: &mut World, system_meta: &mut SystemMeta) -> Self::State
World
access used by this SystemParam
and creates a new instance of this param’s State
.source§unsafe fn new_archetype(
state: &mut Self::State,
archetype: &Archetype,
system_meta: &mut SystemMeta
)
unsafe fn new_archetype( state: &mut Self::State, archetype: &Archetype, system_meta: &mut SystemMeta )
Archetype
, registers the components accessed by this SystemParam
(if applicable).a Read moresource§fn apply(state: &mut Self::State, system_meta: &SystemMeta, world: &mut World)
fn apply(state: &mut Self::State, system_meta: &SystemMeta, world: &mut World)
SystemParam
’s state.
This is used to apply Commands
during apply_deferred
.source§fn queue(
state: &mut Self::State,
system_meta: &SystemMeta,
world: DeferredWorld<'_>
)
fn queue( state: &mut Self::State, system_meta: &SystemMeta, world: DeferredWorld<'_> )
apply_deferred
.source§unsafe fn get_param<'w, 's>(
state: &'s mut Self::State,
system_meta: &SystemMeta,
world: UnsafeWorldCell<'w>,
change_tick: Tick
) -> Self::Item<'w, 's>
unsafe fn get_param<'w, 's>( state: &'s mut Self::State, system_meta: &SystemMeta, world: UnsafeWorldCell<'w>, change_tick: Tick ) -> Self::Item<'w, 's>
SystemParamFunction
. Read moreimpl<'w, 's> ReadOnlySystemParam for SpatialQuery<'w, 's>where
Query<'w, 's, (Entity, &'static Position, &'static Rotation, &'static Collider, Option<&'static CollisionLayers>)>: ReadOnlySystemParam,
Query<'w, 's, Entity, Added<Collider>>: ReadOnlySystemParam,
ResMut<'w, SpatialQueryPipeline>: ReadOnlySystemParam,
Auto Trait Implementations§
impl<'w, 's> Freeze for SpatialQuery<'w, 's>
impl<'w, 's> !RefUnwindSafe for SpatialQuery<'w, 's>
impl<'w, 's> Send for SpatialQuery<'w, 's>
impl<'w, 's> Sync for SpatialQuery<'w, 's>
impl<'w, 's> Unpin for SpatialQuery<'w, 's>
impl<'w, 's> !UnwindSafe for SpatialQuery<'w, 's>
Blanket Implementations§
source§impl<T, U> AsBindGroupShaderType<U> for T
impl<T, U> AsBindGroupShaderType<U> for T
source§fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
T
ShaderType
for self
. When used in AsBindGroup
derives, it is safe to assume that all images in self
exist.source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.source§impl<T> DowncastSync for T
impl<T> DowncastSync for T
source§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§impl<T> Pointable for T
impl<T> Pointable for T
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.